17 research outputs found

    The Effect of Fractal Contact Lenses on Peripheral Refraction in Myopic Model Eyes

    Full text link
    Purpose: To test multizone contact lenses in model eyes: Fractal Contact Lenses (FCLs), designed to induce myopic peripheral refractive error (PRE). Methods: Zemax ray-tracing software was employed to simulate myopic and accommodation-dependent model eyes fitted with FCLs. PRE, defined in terms of mean sphere M and 90–180 astigmatism J180, was computed at different peripheral positions, ranging from 0 to 35 in steps of 5, and for different pupil diameters (PDs). Simulated visual performance and changes in the PRE were also analyzed for contact lens decentration and model eye accommodation. For comparison purposes, the same simulations were performed with another commercially available contact lens designed for the same intended use: the Dual Focus (DF). Results: PRE was greater with FCL than with DF when both designs were tested for a 3.5 mm PD, and with and without decentration of the lenses. However, PRE depended on PD with both multizone lenses, with a remarkable reduction of the myopic relative effect for a PD of 5.5 mm. The myopic PRE with contact lenses decreased as the myopic refractive error increased, but this could be compensated by increasing the power of treatment zones. A peripheral myopic shift was also induced by the FCLs in the accommodated model eye. In regard to visual performance, a myopia under-correction with reference to the circle of least confusion was obtained in all cases for a 5.5 mm PD. The ghost images, generated by treatment zones of FCL, were dimmer than the ones produced with DF lens of the same power. Conclusions: FCLs produce a peripheral myopic defocus without compromising central vision in photopic conditions. FCLs have several design parameters that can be varied to obtain optimum results: lens diameter, number of zones, addition and asphericity; resulting in a very promising customized lens for the treatment of myopia progression.This research was supported by the Ministerio de Economia y Competitividad (grant FIS2011-23175), the Generalitat Valenciana (grant PROMETEO2009-077) and the Universitat Politecnica de Valencia (grant INNOVA SP20120569), Spain.Rodríguez Vallejo, M.; Benlloch Fornés, JI.; Pons Martí, A.; Monsoriu Serra, JA.; Furlan, WD. (2014). The Effect of Fractal Contact Lenses on Peripheral Refraction in Myopic Model Eyes. Current Eye Research. 39(12):1-10. https://doi.org/10.3109/02713683.2014.903498S110391

    Myopia, an underrated global challenge to vision: where the current data takes us on myopia control

    No full text
    Myopia is the most frequent cause of distance impairment in the world and is creating an alarming global epidemic with deleterious ramifications for the quality of life and economic health of individuals and nations as a whole. In addition to being immediately disadvantageous, myopia increases the risk of serious disorders such as myopic macular degeneration, retinal detachment, glaucoma, and cataract and is a leading cause of visual impairment and blindness across many countries. The reduction in age of onset of myopia is of great concern since the earlier the onset, the more myopic the individual will become, with all the attendant increased risks of accompanying debilitating eye conditions. The economic burden is great; both in consequences of uncorrected refractive error and also in the provision of devices for correcting visual acuity. Earlier onset of myopia increases the lifetime economic burden related to loss of productivity and independence, leading to a reduced quality of life. Recent data suggest addressing accommodation per se has little direct amelioration of myopia progression. Pharmacological interventions that effect changes in the sclera show promising efficacy, whereas optical interventions based on a myopic shift in the retinal image are proving to effect up to 55% reduction in the rate of progression of myopia. Early contact lens and spectacle interventions that reduce the rate of progression of myopia are able to significantly reduce the burden of myopia. These non-pharmacological interventions show profound promise in reducing the overall associated morbidity of myopia
    corecore